z-logo
open-access-imgOpen Access
Highly Efficient Single-Pot Scarless Golden Gate Assembly
Author(s) -
Mohammad HamediRad,
Scott Weisberg,
Ran Chao,
Jiazhang Lian,
Huimin Zhao
Publication year - 2019
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.8b00480
Subject(s) - golden gate , modularity (biology) , robustness (evolution) , computer science , nanotechnology , materials science , biology , engineering , gene , genetics , civil engineering , span (engineering)
Golden Gate assembly is one of the most widely used DNA assembly methods due to its robustness and modularity. However, despite its popularity, the need for BsaI-free parts, the introduction of scars between junctions, as well as the lack of a comprehensive study on the linkers hinders its more widespread use. Here, we first developed a novel sequencing scheme to test the efficiency and specificity of 96 linkers of 4-bp length and experimentally verified these linkers and their effects on Golden Gate assembly efficiency and specificity. We then used this sequencing data to generate 200 distinct linker sets that can be used by the community to perform efficient Golden Gate assemblies of different sizes and complexity. We also present a single-pot scarless Golden Gate assembly and BsaI removal scheme and its accompanying assembly design software to perform point mutations and Golden Gate assembly. This assembly scheme enables scarless assembly without compromising efficiency by choosing optimized linkers near assembly junctions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom