z-logo
open-access-imgOpen Access
Riboswitch Signal Amplification by Controlling Plasmid Copy Number
Author(s) -
Mohammed Dwidar,
Yohei Yokobayashi
Publication year - 2019
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.8b00454
Subject(s) - riboswitch , plasmid , biology , synthetic biology , aptamer , gene , rna , computational biology , crispr , crispr interference , genetics , non coding rna , gene expression , cas9
Riboswitches are cis-acting RNA devices in mRNAs that control gene expression in response to chemical inputs. As RNA aptamers that recognize diverse classes of molecules can be isolated by in vitro selection, synthetic riboswitches hold promise for various applications in synthetic biology. One of the major drawbacks of riboswitches, however, is their limited dynamic range. A high level of gene expression in the OFF state (leakage) is also a common problem. To address these challenges, we designed and constructed a dual-riboswitch plasmid in which two genes are controlled by theophylline-activated riboswitches. One riboswitch controls the gene of interest, and another riboswitch controls RepL, a phage-derived replication protein that regulates the plasmid copy number. This single-plasmid system afforded an ON/OFF ratio as high as 3900. Furthermore, we used the system to control CRISPR interference (CRISPRi) targeting endogenous genes, and successfully observed expected phenotypic changes in Escherichia coli.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom