Extracellular Electron Transfer by Shewanella oneidensis Controls Palladium Nanoparticle Phenotype
Author(s) -
Christopher M. Dundas,
Austin J. Graham,
Dwight K. Romanovicz,
Benjamin K. Keitz
Publication year - 2018
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.8b00218
Subject(s) - shewanella oneidensis , electron transfer , biogenesis , nanoparticle , microvesicles , chemistry , shewanella , extracellular , redox , electron transport chain , biophysics , nanotechnology , bacteria , biochemistry , biology , materials science , gene , microrna , genetics , organic chemistry
The relative scarcity of well-defined genetic and metabolic linkages to material properties impedes biological production of inorganic materials. The physiology of electroactive bacteria is intimately tied to inorganic transformations, which makes genetically tractable and well-studied electrogens, such as Shewanella oneidensis, attractive hosts for material synthesis. Notably, this species is capable of reducing a variety of transition-metal ions into functional nanoparticles, but exact mechanisms of nanoparticle biosynthesis remain ill-defined. We report two key factors of extracellular electron transfer by S. oneidensis, the outer membrane cytochrome, MtrC, and soluble redox shuttles (flavins), that affect Pd nanoparticle formation. Changes in the expression and availability of these electron transfer components drastically modulated particle synthesis rate and phenotype, including their structure and cellular localization. These relationships may serve as the basis for biologically tailoring Pd nanoparticle catalysts and could potentially be used to direct the biogenesis of other metal nanomaterials.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom