z-logo
open-access-imgOpen Access
Engineering Translational Resource Allocation Controllers: Mechanistic Models, Design Guidelines, and Potential Biological Implementations
Author(s) -
Alexander P. S. Darlington,
Juhyun Kim,
José I. Jiménez,
Declan G. Bates
Publication year - 2018
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.8b00029
Subject(s) - modularity (biology) , synthetic biology , computer science , resource allocation , distributed computing , controller (irrigation) , resource (disambiguation) , set (abstract data type) , implementation , rational design , bioinformatics , biology , computer network , genetics , agronomy , programming language
The use of orthogonal ribosomes in combination with dynamic resource allocation controllers is a promising approach for relieving the negative effects of cellular resource limitations on the modularity of synthetic gene circuits. Here, we develop a detailed mechanistic model of gene expression and resource allocation, which when simplified to a tractable level of complexity, allows the rational design of translational resource allocation controllers. Analysis of this model reveals a fundamental design trade-off: that reducing coupling acts to decrease gene expression. Through a sensitivity analysis of the experimentally tunable controller parameters, we identify how each controller design parameter affects the overall closed-loop behavior of the system, leading to a detailed set of design guidelines for optimally managing this trade-off. On the basis of our designs, we evaluated a number of alternative potential experimental implementations of the proposed system using commonly available biological components. Finally, we show that the controller is capable of dynamically allocating ribosomes as needed to restore modularity in a number of more complex synthetic circuits, such as the repressilator, and activation cascades composed of multiple interacting modules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom