z-logo
open-access-imgOpen Access
Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait
Author(s) -
Matthew J. Maurer,
Lawrence Sutardja,
Dominic Pinel,
Štefan Bauer,
Amanda L. Muehlbauer,
Tyler D. Ames,
Jeffrey M. Skerker,
Adam P. Arkin
Publication year - 2016
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.6b00264
Subject(s) - quantitative trait locus , biology , trait , computational biology , hydrolysate , epistasis , genetics , microbiology and biotechnology , saccharomyces cerevisiae , computer science , yeast , gene , biochemistry , hydrolysis , programming language
Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom