Exploring Selective Pressure Trade-Offs for Synthetic Addiction to Extend Metabolite Productive Lifetimes in Yeast
Author(s) -
SangWoo Lee,
Peter Rugbjerg,
Morten Otto Alexander Sommer
Publication year - 2021
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.1c00240
Subject(s) - biochemical engineering , synthetic biology , saccharomyces cerevisiae , metabolic engineering , bioprocess , bioreactor , genetic fitness , computer science , production (economics) , microbiology and biotechnology , biology , yeast , computational biology , selection (genetic algorithm) , economics , engineering , artificial intelligence , gene , genetics , microeconomics , paleontology , botany
Engineered microbes often suffer from reduced fitness resulting from metabolic burden and various stresses. The productive lifetime of a bioreactor with engineered microbes is therefore susceptible to the rise of nonproductive mutants with better fitness. Synthetic addiction is emerging as a concept to artificially couple the growth rate of the microbe to production to tackle this problem. However, only a few successful cases of synthetic addiction systems have been reported to date. To understand the limitations and design constraints in long-term cultivations, we designed and studied conditional synthetic addiction circuits in Saccharomyces cerevisiae . This allowed us to probe a range of selective pressure strengths and identify the optimal balance between circuit stability and production-to-growth coupling. In the optimal balance, the productive lifetime was greatly extended compared with suboptimal circuit tuning. With a too-high or -low pressure, we found that production declines mainly through homologous recombination. These principles of trade-off in the design of synthetic addition systems should lead to the better control of bioprocess performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom