Allosteric Regulation of DNA Circuits Enables Minimal and Rapid Biosensors of Small Molecules
Author(s) -
Alan F. RodríguezSerrano,
IMing Hsing
Publication year - 2021
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.0c00545
Subject(s) - biosensor , allosteric regulation , tetr , dna , effector , chemistry , biology , computational biology , biophysics , repressor , biochemistry , transcription factor , enzyme , gene
Detection of environmental pollutants is crucial to safeguard ecological and public health. Here, we report a modular biosensing approach for the detection of contaminants based on the regulation of a minimal DNA signal amplifier and transducer circuit by allosteric transcription factors and their cognate ligands. We leverage the competition between allosteric proteins and an endonuclease to modulate cascade toehold-mediated strand displacement reactions, which are triggered in the presence of specific effectors and sustained by the endonuclease. We built two optical biosensors for the detection of tetracyclines and macrolides in water using repressors TetR and MphR, respectively. We demonstrate that our minimal, fast, and single-step biosensors can successfully detect antibiotics in nanomolar levels and apply them to report the presence of spiked-in antibiotics in water samples in a matter of minutes, suggesting great potential for monitoring of water contaminants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom