z-logo
open-access-imgOpen Access
Securing the Exchange of Synthetic Genetic Constructs Using Digital Signatures
Author(s) -
Jenna Gallegos,
Diptendu Mohan Kar,
Indrakshi Ray,
Indrajit Ray,
Jean Peccoud
Publication year - 2020
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.0c00401
Subject(s) - digital signature , encryption , counterfeit , computer science , synthetic biology , plasmid , function (biology) , field (mathematics) , computational biology , genetics , computer security , biology , dna , hash function , mathematics , political science , pure mathematics , law
The field of synthetic biology relies on an ever-growing supply chain of synthetic genetic material. Technologies to secure the exchange of this material are still in their infancy. Solutions proposed thus far have focused on watermarks, a dated security approach that can be used to claim authorship, but is subject to counterfeit, and does not provide any information about the integrity of the genetic material itself. In this manuscript, we describe how data encryption and digital signature algorithms can be used to ensure the integrity and authenticity of synthetic genetic constructs. Using a pilot software that generates digital signatures and other encrypted data for plasmids, we demonstrate that we can predictably extract information about the author, the identity, the integrity of plasmid sequences, and even annotations from sequencing data alone without a reference sequence, all without compromising the function of the plasmids. Encoding a digital signature into a DNA molecule provides an avenue for genetic designers to claim authorship of DNA molecules. This technology could help compliance with material transfer agreements and other licensing agreements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom