Construction of Fully Segregated Genomic Libraries in Polyploid Organisms Such as Synechocystis sp. PCC 6803
Author(s) -
Patricia Caicedo-Burbano,
Tycho Smit,
Hugo Pineda Hernández,
W. Du,
Filipe Branco dos Santos
Publication year - 2020
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.0c00353
Subject(s) - biology , polyploid , synechocystis , computational biology , chromosome , bacterial artificial chromosome , genetics , genome , genomic library , cell sorting , gene , cell , base sequence , mutant
Several microbes are polyploid, meaning they contain several copies of their chromosome. Cyanobacteria, while holding great potential as photosynthetic cell factories of various products, are found among them. In these clades the diversity of genetic elements that serve within the basic molecular toolbox is often limiting. To assist mining for the latter, we present here a method for the generation of fully segregated genomic libraries, specifically designed for polyploids. We provide proof-of-principle for this method by generating a fully segregated genomic promoter library in the cyanobacterium Synechocystis sp. PCC 6803. This new tool was first analyzed through fluorescence activated cell sorting (FACS) and then a fraction was further characterized regarding promoter sequence. The location of libraries on the chromosome provides a better reflection of the behavior of its elements. Our work presents the first method for constructing fully segregated genomic libraries in polyploids, which may facilitate their usage in synthetic biology applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom