z-logo
open-access-imgOpen Access
Artificial Protein-Responsive Riboswitches Upregulate Non-AUG Translation Initiation in Yeast
Author(s) -
Fumihiro Horie,
Kei Endo,
Koichi Ito
Publication year - 2020
Publication title -
acs synthetic biology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.0c00206
Subject(s) - riboswitch , synthetic biology , computational biology , biology , saccharomyces cerevisiae , translation (biology) , eukaryotic translation , five prime untranslated region , translational regulation , genetics , gene , rna , messenger rna , non coding rna
Artificial control of gene expression is one of the core technologies for engineering biological systems. Riboswitches are cis-acting elements on mRNA that regulate gene expression in a ligand-dependent manner often seen in prokaryotes, but rarely in eukaryotes. Because of the poor variety of such elements available in eukaryotic systems, the number of artificially engineered eukaryotic riboswitches, especially of the upregulation type, is still limited. Here, we developed a design principle for upregulation-type riboswitches that utilize non-AUG initiation induced by ribosomal stalling in a ligand-dependent manner in Saccharomyces cerevisiae . Our design principle simply required the proper positioning of a near-cognate start codon relative to the RNA aptamer. Intriguingly, the CUG codon was the most preferable for non-AUG ON switches in terms of output level and switch performance. This work establishes novel choices for artificial genetic control in eukaryotes with versatile potential for industrial and biomedical applications as well as basic research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom