SARS-CoV-2 Glycosylation Suggests That Vaccines Should Have Adopted the S1 Subunit as Antigen
Author(s) -
Ariel Fernández
Publication year - 2021
Publication title -
acs pharmacology and translational science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.271
H-Index - 10
ISSN - 2575-9108
DOI - 10.1021/acsptsci.1c00036
Subject(s) - epitope , protein subunit , virology , antigen , immune system , antibody , glycosylation , biology , virus , immunology , genetics , gene
Extant SARS-CoV-2 vaccines use the trimeric spike (S) protein as antigen. In the virus, the spike region is extensively glycosylated, modulating immune surveillance. Because they have been defused, many epitopes in the vaccine sidetrack the immune response. Only the receptor binding domain within the S1 subunit is well-exposed to antibody recognition. After proteolytic virus activation, the S1 subunit offers additional epitopes with antibody exposure. Thus, vaccines adopting the S1 subunit as antigen would have been more efficacious than the existing ones.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom