z-logo
open-access-imgOpen Access
Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes
Author(s) -
Surong Guo,
Nahid Talebi,
Alfredo Campos,
Wilfried Sigle,
Martin Esmann,
Simon Becker,
Christoph Lienau,
Mathieu Kociak,
Peter A. van Aken
Publication year - 2019
Publication title -
acs photonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.735
H-Index - 89
ISSN - 2330-4022
DOI - 10.1021/acsphotonics.9b00838
Subject(s) - plasmon , optics , cathodoluminescence , radiation , surface plasmon , surface plasmon polariton , materials science , spectroscopy , near and far field , optoelectronics , physics , quantum mechanics , luminescence
Three-dimensional plasmonic gold tapers are widely used structures in nano-optics for achieving imaging at the nanometer scale, enhanced spectroscopy, confined light sources, and ultrafast photoelectron emission. To understand their radiation properties further, especially in the proximity of the apex at the nanoscale, we employ cathodoluminescence spectroscopy with high spatial and energy resolution. The plasmon-induced radiation in the visible spectral range from three-dimensional gold tapers with opening angles of 13° and 47° is investigated under local electron excitation. We observe a much weaker radiation from the apex of the 13° taper than from that of the 47° taper. By means of finite-difference time-domain simulations we show that for small opening angles plasmon modes that are created at the apex are efficiently guided along the taper shaft. In contrast for tapers with larger opening angles, generated plasmon polaritons experience larger radiation damping. Interestingly, we find for both tapers that the most intense radiation comes from locations a few hundreds of nanometers behind the apexes, instead of exactly at the apexes. Our findings provide useful details for the design of plasmonic gold tapers as confined light sources or light absorbers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom