z-logo
open-access-imgOpen Access
High Internal Quantum Efficiency Ultraviolet Emission from Phase-Transition Cubic GaN Integrated on Nanopatterned Si(100)
Author(s) -
Richard Liu,
Richard D. Schaller,
Chang Qiang Chen,
C. Bayram
Publication year - 2018
Publication title -
acs photonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.735
H-Index - 89
ISSN - 2330-4022
DOI - 10.1021/acsphotonics.7b01231
Subject(s) - cathodoluminescence , materials science , photoluminescence , ultraviolet , optoelectronics , raman spectroscopy , quantum efficiency , substrate (aquarium) , phase (matter) , wide bandgap semiconductor , molecular physics , luminescence , optics , chemistry , physics , oceanography , organic chemistry , geology
Ultraviolet emission characteristics of cubic (c-) GaN enabled through hexagonal-to-cubic phase transition are reported. Substrate patterning and material growth are shown to affect phase purity and emission characteristics of c-GaN as studied by electron backscatter diffraction, and photo- and cathodoluminescence, respectively. Raman study shows a tensile strain in the c-GaN. Time-resolved photoluminescence reveals c-GaN band edge emission decay time of 11 ps. The ultraviolet emissions from both phases of GaN are linearly polarized in the same direction, which is along the ⟨112̅0⟩ and ⟨110⟩ directions of hexagonal GaN and c-GaN, respectively. Temperature-dependent (5.7 to 280 K) cathodoluminescence studies reveal an internal quantum efficiency of ~29% at room temperature along with intrinsic and extrinsic defect energy levels of ~124 and ~344 meV, respectively, of the phase-transition c-GaN. Using the IQE value and carrier decay lifetime, a radiative lifetime of 38 ps is extracted. Overall, photonic properties of phase-transition c-GaN and their dependence on substrate patterning and material growth are reported.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom