z-logo
open-access-imgOpen Access
Improvement of Bio-Oil and Nitrogen Recovery from Microalgae Using Two-Stage Hydrothermal Liquefaction with Solid Carbon and HCl Acid Catalysis
Author(s) -
R. Usami,
Kengo Fujii,
Chihiro Fushimi
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b04468
Subject(s) - hydrothermal liquefaction , chemistry , nitrogen , hydrolysis , catalysis , yield (engineering) , nuclear chemistry , carbon fibers , organic chemistry , materials science , metallurgy , composite number , composite material
Bio-oil production from microalgae by using hydrothermal liquefaction (HTL) has been conducted extensively in the last decade. In this work, we conducted two-stage HTL of a microalga (, JPCC DA0580) in the presence of 5.0 g/L carbon solid acid or a 0.02-0.50 M HCl catalyst to increase bio-oil yield and nitrogen recovery into the aqueous phase (AP). The first stage (HTL 1), to hydrolyze proteins, carbohydrates, and lipids and elute nitrogen components into the AP, was conducted at 100-250 °C for 30-120 min. The second stage (HTL 2), to produce the bio-oil, was conducted at 280-320 °C for 0-30 min. The best conditions to obtain a high bio-oil yield and NH recovery in the AP were 200 °C and 30 min of residence time for HTL 1 and 320 °C and 0 min residence time for HTL 2. We found that 0.50 M HCl decreased the bio-oil yield while greatly increasing NH in the AP and decreasing the nitrogen content in the bio-oil. This was probably due to the catalytic effect of HCl promoting hydrolysis of protein and deamination of amino acids during HTL 1. The fractions of water-soluble products were greatly increased by performing HTL 2 in neutral conditions while this maintained low nitrogen content in the bio-oil. From GC-MS analyses of the bio-oil, it was observed that, by using 0.50 M HCl, peak intensities of all the GC peaks decreased and MS spectra of amines decreased. The carbon solid acid had an insignificant influence on bio-oil and NH yields.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom