Research Article Product Composition Analysis and Process Research of Oligosaccharides Produced from Enzymatic Hydrolysis of High-Concentration Konjac Flour
Author(s) -
Xianghua Tang,
Xuan Zhu,
Yunjuan Yang,
Zhenxiong Qi,
Yuelin Mu,
Zunxi Huang
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b04218
Subject(s) - hydrolysate , chemistry , hydrolysis , enzymatic hydrolysis , polysaccharide , food science , chromatography , composition (language) , degree of polymerization , organic chemistry , polymerization , polymer , philosophy , linguistics
There is a huge variability in reducing sugars, viscosity, and composition of oligosaccharides in the hydrolyzed products of konjac flour with different concentrations. We analyzed the factors affecting reducing sugars, viscosity, and the average degree of polymerization (DP) during the preparation of oligosaccharides from konjac flour hydrolyzed by β-mannanase under the high-concentration solute hydrolysis model. Hydrolysate of konjac flour, using concentrations ranging from 50 to 200 g/L, was directly added into 20 U/mL of β-mannanase solution. The results showed that when the proportion of the water content in the solution decreased, the viscosity of the solution and the DP of polysaccharides changed significantly. When the viscosity of the hydrolysate was controlled within the range of 30-20 mPa·s, the concentration of the reducing sugars was maintained in the range of 9-13 g/L and the average DP of the polysaccharides was controlled in the range of 2.42-9.78. We also found that a high concentration of hydrolysate was beneficial for decreasing the production of reducing sugars, and the diversification of macromolecular glycan was beneficial to the preparation of functional sugars. Moreover, we observed that the proportion of reducing sugars with free water content was high and that the preparation of oligosaccharides via the high-concentration solid-state method increased product diversity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom