Amine-Functionalized ZIF-8 as a Fluorescent Probe for Breath Volatile Organic Compound Biomarker Detection of Lung Cancer Patients
Author(s) -
Yuanhan Xia,
Yi Hong,
Rongchuang Geng,
Xue Li,
Ailan Qu,
Zhen Zhou,
Zhijuan Zhang
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b03793
Subject(s) - biomarker , fluorescence , amine gas treating , lung cancer , chemistry , volatile organic compound , environmental chemistry , chromatography , medicine , pathology , organic chemistry , biochemistry , physics , quantum mechanics
The highly thermally and chemically stable imidazole framework ZIF-8 samples were separately postmodified with amine groups by using N , N '-dimethylethylenediamine (MMEN) and N , N -dimethylaminoethylamine (MAEA), which had the same molecular formula but different structures. The modified ZIF-8 samples (ZIF-8@amine) were thoroughly characterized, including powder X-ray diffractometry, Fourier-transformed infrared spectroscopy, and physical adsorption at 77 K by nitrogen, thermogravimetric analysis, and photophysical characterization. Results showed that after modification, the Brunauer-Emmett-Teller surface area and total pore volume both increased, almost one time higher than those of the original ZIF-8 sample, and followed the order: ZIF-8-MMEN > ZIF-8-MAEA > ZIF-8. Furthermore, the N-H group was successfully grafted into the modified ZIF-8 samples. To examine the sensing properties of the modified ZIF-8@amine samples toward the breath biomarkers of lung cancer, five potential volatile organic compound biomarkers were used as analytes. ZIF-8-MMEN and ZIF-8-MAEA revealed a unique capacity for sensing hexanal, ethylbenzene, and 1-propanol with high efficiency and sensitivity. The three samples all did not show sensing ability toward styrene and isoprene. In addition, ZIF-8, ZIF-8-MMEN, and ZIF-8-MAEA all can sense hexanal with a detection limit as low as 1 ppb.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom