z-logo
open-access-imgOpen Access
Single-Molecule Fluorescence Microscopy for Probing the Electrochemical Interface
Author(s) -
Rui Hao,
Zhuoyu Peng,
Bo Zhang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b03763
Subject(s) - interface (matter) , electrochemistry , electrode , nanotechnology , materials science , microscopy , molecule , characterization (materials science) , scanning electrochemical microscopy , fluorescence microscope , fluorescence , computer science , chemistry , optics , physics , organic chemistry , gibbs isotherm
The electrochemical interface is an ultrathin interfacial region between the electrode and solution where electrochemical reactions occur. The study of the electrochemical interface continues to be one of the most exciting directions in modern electrochemistry research. Much of our existing knowledge about the electrochemical interface comes from ensemble measurements and ex situ imaging of the electrode surface. Due to its enormous complexity and highly dynamic nature, however, new imaging tools that can probe the interface in situ with ultrahigh spatial and temporal resolution and single-molecule sensitivity are apparently needed. Single-molecule fluorescence microscopy (SMFM) has emerged as a powerful tool that is uniquely suited for studying the electrochemical interface. In this mini-review, we first give a brief overview of various existing SMFM methods for studying electrochemical problems. We then discuss several exciting research topics involving the use of SMFM methods for studying surface-immobilized molecules, single freely diffusing molecules, single molecules as catalytic reaction indicators, and single-molecule labeling and imaging of interfacial nanobubbles. We anticipate that we will continue to see a rapid increase in publications on stochastic electrochemistry of single molecules and nanoparticles. The increased use of SMFM will likely bring new information to our study of the electrochemical interface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom