Comparison of Attachment and Antibacterial Activity of Covalent and Noncovalent Lysozyme-Functionalized Single-Walled Carbon Nanotubes
Author(s) -
Matthew M. Noor,
Joyanta Goswami,
Virginia A. Davis
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b03387
Subject(s) - lysozyme , covalent bond , carbon nanotube , chemistry , non covalent interactions , antibacterial activity , polymer chemistry , materials science , nanotechnology , organic chemistry , bacteria , biochemistry , hydrogen bond , molecule , biology , genetics
Carbon nanotube-lysozyme (LSZ) conjugates provide an attractive combination of high strength and antimicrobial activity. However, there has not been a direct comparison of the covalent and noncovalent methods for creating them. In this work, single-walled carbon nanotubes (SWNT) were functionalized with LSZ using both noncovalent adsorption and covalent attachment via N -ethyl- N -(3-dimethylamino-propyl) carbodiimide hydrochloride- N -hydroxysuccinimide (EDC-NHS) chemistry. The amount of attached lysozyme, dispersion stability, and antimicrobial activity was compared. In addition, the mechanical properties of LSZ-SWNT in poly(vinyl alcohol) (PVA) composite films were investigated. Dispersions of covalently bound LSZ-SWNT had better dispersion stability. This was attributed to covalent functionalization enabling sustained SWNT dispersion at a lower LSZ/SWNT ratio. The covalently bound LSZ-SWNT also exhibited a lower initial rate of antibacterial response but were active over a longer time scale. Composite films made from LSZ-SWNT maintained similar activity as the corresponding dispersions. However, the noncovalent LSZ-SWNT films were stronger and more hydrolytically stable than those made from covalent LSZ-SWNT.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom