z-logo
open-access-imgOpen Access
Laser-Induced Wettability Gradient Surface of the Aluminum Matrix Used for Directional Transportation and Collection of Underwater Bubbles
Author(s) -
Zhixia Zheng,
Huan Yang,
Yiqing Cao,
Ziyi Dai
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b03349
Subject(s) - wetting , materials science , surface tension , bubble , underwater , microporous material , composite material , nanotechnology , mechanics , geology , oceanography , physics , quantum mechanics
The control of underwater bubble behavior on a solid surface has great research significance. However, the control of the spontaneous directional transport and collection of numerous underwater bubbles remains a challenge. A new technique of a metal mesh with superhydrophobic/hydrophobic properties is demonstrated here, which creates a wettability gradient coupled with a microporous array by means of pulsed fiber laser ablation and chemical modification of the aluminum sheet. The resultant wettability surface effectively achieved the spontaneous movement of bubbles along the directional wettability gradient (superaerophobicity to aerophilicity) and through the metal mesh (aerophilicity to superaerophilicity) in the direction of decreasing free energy. Theoretical analysis accounted first for the spontaneous sliding of bubbles on the wettability gradient surface as a result of the action of an unbalanced surface tension force and second for the spontaneous transition of bubbles from the aerophilic to superaerophilic side as a result of the combined action of Laplace pressure and buoyancy. A device with the capability of directional transportation and collection of underwater bubbles was designed based on the samples with a wettability gradient and a superhydrophobic/hydrophobic microporous array as the core components. The potential application is laser ablation of wettability gradient surfaces and metal mesh with superhydrophobic/hydrophobic properties for directional transportation and collection of underwater bubbles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom