Advanced Electrocatalysts Based on Metal–Organic Frameworks
Author(s) -
Fuqin Zheng,
Ziwei Zhang,
Chunmei Zhang,
Wei Chen
Publication year - 2019
Publication title -
acs omega
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b03295
Subject(s) - metal organic framework , materials science , nanotechnology , electrocatalyst , electrical conductor , electrochemistry , catalysis , template , conductive polymer , electrode , polymer , chemistry , composite material , organic chemistry , adsorption
In recent years, metal-organic frameworks (MOFs) have been wildly studied as heterogeneous catalysts due to their diversity of structures and outstanding physical and chemical properties. Meanwhile, MOFs have also been regarded as promising templates for the synthesis of conductive and electrochemically active catalysts. However, in most of the studies, high-temperature annealing is needed to transform nonconductive or low-conductive MOFs to conductive materials for electrocatalyis, during which the unique structures and intrinsic active sites in MOFs can be easily destroyed. Therefore, in recent years, different strategies have been developed for improving the catalytic performances of MOF-based composites for electrochemical reactions with no need of post-treatment. This mini-review highlights the recent advances on MOF-based structures with improved conductivities and electrochemical activities for the application in electrocatalysis. Overall, the advanced MOF-based electrocatalysts include the highly conductive and electrochemically active pristine MOFs, MOFs combined with conductive substrates, and MOFs hybridized with active materials. Finally, we propose the direction for future works on MOF-based electrocatalysts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom