z-logo
open-access-imgOpen Access
Iron-Catalyzed Meerwein Carbooxygenation of Electron-Rich Olefins: Studies with Styrenes, Vinyl Pyrrolidinone, and Vinyl Oxazolidinone
Author(s) -
Edson Leonardo Scarpa de Souza,
Carson W. Wiethan,
Carlos Roque D. Correia
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b03046
Subject(s) - chemistry , catalysis , styrene , electron transfer , redox , acetonitrile , methanol , copolymer , polymer chemistry , organic chemistry , combinatorial chemistry , photochemistry , polymer
The arylative oxygenation of the electron-rich olefins styrene, α-methylstyrene, vinyl pyrrolidinone, and vinyl oxazolidinone was accomplished using arenediazonium salts and catalytic amounts of FeSO 4 in an effective single electron transfer radical process. A broad range of aryldiazonium salts was tolerated using water, methanol, or their combination with acetonitrile to furnish the corresponding carbohydroxylated and carbomethoxylated products (42 examples), including functionalized dihydroisocoumarin and dihydrobenzofuran systems in good to excellent yields (up to 88%). The protocols developed for the Fe(II)-catalyzed carbohydroxylation were also compared to Ru(II) and Ir(III) photoredox carbooxygenations of these electron-rich olefins. The Fe(II)-catalyzed process proved to be highly competitive compared to the photoredox and the uncatalyzed processes. The proposed mechanism for the Fe(II)-catalyzed reactions involves the synergic combination with an effective Fe +2 /Fe +3 redox system and a radical polar crossover mechanism featuring an unprecedented capture of the reactive N -acyliminium in the case of vinyl pyrrolidinone and vinyl oxazolidinone.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom