Exfoliated Graphite Nanoplatelet-Carbon Nanotube Hybrid Composites for Compression Sensing
Author(s) -
Changyoon Jeong,
YoungBin Park
Publication year - 2020
Publication title -
acs omega
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b03012
Subject(s) - gauge factor , materials science , piezoresistive effect , composite material , carbon nanotube , nanocomposite , graphite , polydimethylsiloxane , modulus , compressive strength , composite number , young's modulus , medicine , alternative medicine , pathology , fabrication
In this study, we investigated the gauge factor and compressive modulus of hybrid nanocomposites of exfoliated graphite nanoplatelets (xGnP) and multiwalled carbon nanotubes (MWCNTs) in a polydimethylsiloxane matrix under compressive strain. Mechanical and electrical tests were conducted to investigate the effects of nanofiller wt %, the xGnP size, and xGnP:MWCNT ratio on the compressive modulus and sensitivity of the sensors. It was found that nanofiller wt %, the xGnP size, and xGnP:MWCNT ratio significantly affect the electromechanical properties of the sensor. The compressive modulus increased with an increase in the nanofiller wt % and a decrease in the xGnP size and xGnP:MWCNT ratio. However, the gauge factor decreases with a decrease in the nanofiller wt % and xGnP size and an increase in the xGnP:MWCNT ratio. Therefore, by investigating the piezoresistive effects of various factors for sensing performance, such as wt %, xGnP size, and xGnP:MWCNT ratio, the concept of one- and two-dimensional hybrid fillers provides an effective way to tune both mechanical properties and sensitivity of nanocomposites by tailoring the network structure of fillers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom