z-logo
open-access-imgOpen Access
Development of the PANI/MWCNT Nanocomposite-Based Fluorescent Sensor for Selective Detection of Aqueous Ammonia
Author(s) -
Debasis Maity,
Mathankumar Manoharan,
Ramasamy Thangavelu Rajendra Kumar
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02885
Subject(s) - aqueous solution , polyaniline , zeta potential , nanocomposite , ammonia , detection limit , fluorescence , materials science , chemical engineering , carbon nanotube , analytical chemistry (journal) , chemistry , inorganic chemistry , nanoparticle , nanotechnology , polymer , composite material , chromatography , organic chemistry , physics , quantum mechanics , engineering , polymerization
The present work reported the polyaniline (PANI) and multiwalled carbon nanotube (MWCNT)-based nanocomposite as a sensing material for the determination of aqueous ammonia by the enhanced fluorescence method. The excitation wavelength-dependent photoluminescence (PL) intensity has shown dual emission peaks at 340 and 380 nm that correspond to two different excitation energy states. The pH-based PL intensity and zeta potential variation were analyzed to optimize the suitable medium for aqueous ammonia sensing. Zeta potential was found to shift from 4 to -21 mV upon changing the pH of the the solution from acidic to alkaline medium. The fluorescence intensity of PANI/MWCNTs was found to increase upon increasing the pH from 3.0 to 6.0 (acidic region) and exhibits a plateau upon further increasing the pH from 7.0 to 12 (basic region). The PANI/MWCNT composite has shown a linear response to aqueous ammonia concentration varying from 25 to 200 μM with a correlation coefficient ( R 2 ) of 0.99 and a limit of detection of 15.19 μM. The presence of relevant interference molecules and physiological ions had no influence on the detection of aqueous ammonia. Field-level study demonstrated that the level of aqueous ammonia can be determined selectively by using the PANI/MWCNT composite for various applications. The mechanism for the selective detection of aqueous ammonia is deliberated in detail.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom