Predicting Stability Constants for Terbium(III) Complexes with Dipicolinic Acid and 4-Substituted Dipicolinic Acid Analogues using Density Functional Theory
Author(s) -
Hsieh Chen,
Rena Shi,
Hooisweng Ow
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02851
Subject(s) - dipicolinic acid , terbium , density functional theory , chemistry , picolinic acid , inorganic chemistry , computational chemistry , biochemistry , organic chemistry , biology , botany , ion , spore
The relative stability constants of Tb(III) complexes exhibiting binding to a series of 4-substituted analogues of dipicolinic acid (2,6-pyridinedicarboxylic acid) (DPA) were calculated using density functional theory (DFT) with the standard thermodynamic cycle. DFT calculations showed that the strengths of the stability constants were modified by the substituents in the following (decreasing) order: -NH 2 > -OH ∼ -CH 2 OH > -imidazole ∼ -Cl ∼ -Br ∼ -H > -F > -I, with the differences among them falling within one to two log units except for -NH 2 . Through population and structural analysis, we observed that the -NH 2 , -OH, -CH 2 OH, and halide substituents can donate electrons via resonance effect to the pyridine ring of DPA while inductively withdrawing electrons with different strengths, thus resulting in the different binding strengths of the 4-substituted DPAs to the Tb(III) ions. We believe that these observations possess utility not only in the ongoing development of luminescent probes for bioanalytical studies but also for more recent cross-industrial efforts to enhance reservoir surveillance capabilities using chemical tracers within the oil and gas sector.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom