z-logo
open-access-imgOpen Access
Two-Dimensional Covalent Organic Framework–Graphene Photodetectors: Insight into the Relationship between the Microscopic Interfacial Structure and Performance
Author(s) -
Lili Cao,
Beidou Guo,
Yanxia Yu,
Xin Zhou,
Jian Gong,
Shengbin Lei
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02739
Subject(s) - graphene , photodetector , materials science , stacking , photodetection , optoelectronics , responsivity , monolayer , scanning tunneling microscope , nanotechnology , chemistry , organic chemistry
Graphene is an attractive material for photodetection and optoelectronic applications because it offers a broad spectral bandwidth and ultrafast response speed. However, because of the broad light absorption characteristic, graphene has a lack of selectivity to the wavelength, which limits the performance of graphene-based photodetectors. Here, we demonstrate a novel hybrid photodetector with monolayer graphene covered with an ultrathin film of surface covalent organic frameworks (COFs) with variable structures as the light-harvesting materials. Photodetectors based on surface COF-G show enhanced responsivity in comparison with unmodified graphene and graphene modified with monomers. The submolecular resolution of scanning tunneling microscopy allows us to get a direct insight into the relationship between the microscopic interfacial structure and the performance of the device. We prove that the enhancement in the device performance is directly related with the orderliness of surface COFs, which influences the interfacial charge transfer by tuning π-π stacking between surface COF and graphene.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom