z-logo
open-access-imgOpen Access
Decapping Scavenger Enzyme Activity toward N2-Substituted 5′ End mRNA Cap Analogues
Author(s) -
Paulina Pietrow,
Aleksandra Ferenc-Mrozek,
Karolina Piecyk,
Elżbieta Bojarska,
Edward Darżynkiewicz,
Marzena JankowskaAnyszka
Publication year - 2019
Publication title -
acs omega
Language(s) - Uncategorized
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02715
Subject(s) - biochemistry , enzyme , caenorhabditis elegans , chemistry , messenger rna , histidine , biology , gene
mRNA degradation is a key mechanism of gene expression regulation. In the 3' → 5' decay pathway, mRNA is degraded by the exosome complex and the resulting cap dinucleotide or short-capped oligonucleotide is hydrolyzed mainly by a decapping scavenger enzyme (DcpS)-a member of the histidine triad family. The decapping mechanism is similar for DcpS from different species; however, their respective substrate specificities differ. In this paper, we describe experiments exploring DcpS activity from human (hDcps), Caenorhabditis elegans (CeDcpS), and Ascaris suum (AsDcpS) toward dinucleotide cap analogues modified at the N2 position of 7-methylguanosine. Various alkyl substituents were tested, and cap analogues with a longer than three-carbon chain were nonhydrolyzable by hDcpS and CeDcpS. Resistance of the modified cap analogues to hDcpS and CeDcpS may be associated with their weaker binding with enzymes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom