Combinatorial Enzymatic Synthesis of Unnatural Long-Chain β-Branch Pyrones by a Highly Promiscuous Enzyme
Author(s) -
Lixia Pan,
Lilan Yang,
Yanbing Huang,
Yongyuan Liang,
Qihuan He,
Dengfeng Yang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02473
Subject(s) - enzyme , chemistry , stereochemistry , biochemistry , combinatorial chemistry
In this study, we described in detail a combinatorial enzymatic synthesis approach to produce a series of unnatural long-chain β-branch pyrones. We attempted to investigate the catalytic potential of a highly promiscuous enzyme type III PKS to catalyze the non-decarboxylative condensation reaction by two molecules of fatty acyl diketide- N -acetylcysteines (diketide-NACs) units. Two non-natural long-chain (C 16 , C 18 ) fatty acyl diketide-NACs were prepared successfully for testing the ability of non-decarboxylative condensation. In vitro, 12 novel naturally unavailable long-chain β-branch pyrones were generated by one-pot formation and characterized by ultraviolet-visible spectroscopy and high-resolution liquid chromatography-mass spectrometry. Interestingly, enzymatic kinetics result displays that this enzyme exhibits the remarkable compatibility to various non-natural long-chain substrates. These results would be useful to deeply understand the catalytic mechanism of this enzyme and further extend the application of enzymatic synthesis of non-natural products.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom