Thermodynamics of Interactions Between Charged Surfactants and Ionic Poly(amino acids) by Isothermal Titration Calorimetry
Author(s) -
Gediminas Skvarnavičius,
Danielius Dvareckas,
Daumantas Matulis,
Vytautas Petrauskas
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02425
Subject(s) - isothermal titration calorimetry , chemistry , cationic polymerization , ionic bonding , titration , pulmonary surfactant , molecule , polymer chemistry , inorganic chemistry , organic chemistry , ion , biochemistry
Interactions between charges play a role in protein stability and contribute to the energetics of binding between various charged ligands. Ionic surfactants are charged molecules, whose interactions with proteins are still rather poorly understood despite their wide applications. Here, we show by isothermal titration calorimetry that cationic alkylammonium surfactants bind to negatively charged polyaspartate and polyglutamate homopolymers stoichiometrically, i.e., one surfactant molecule per charged amino acid. Similarly, negatively charged alkyl sulfates (e.g., sodium dodecyl sulfate) and alkane sulfonates bind stoichiometrically to positively charged polylysine, polyornithine, and polyarginine homopolymers. In these reactions, the interacting counterparts form ion pairs and the resulting electrostatically neutral complex coprecipitates from solution. The enthalpies and heat capacities are determined for various pairs of ionic surfactants and charged amino acid homopolymers. These results show the energetic contributions of ionic headgroups and the CH 2 group to surfactant interactions with proteins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom