z-logo
open-access-imgOpen Access
Air-Stable Aerophobic Polydimethylsiloxane Tube with Efficient Self-Removal of Air Bubbles
Author(s) -
JinYoung Park,
Seeun Woo,
Seongmin Kim,
Moonsu Kim,
Woonbong Hwang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02376
Subject(s) - superhydrophilicity , polydimethylsiloxane , air bubble , materials science , bubble , tube (container) , nanotechnology , microfluidics , saturation (graph theory) , composite material , chemical engineering , wetting , computer science , mathematics , combinatorics , parallel computing , engineering
The adherence of underwater air bubbles to surfaces is a serious cause of malfunction in applications such as microfluidics, transport, and space devices. However, realizing spontaneous and additional unpowered transport of underwater air bubbles inside tubes remains challenging. Although superhydrophilic polydimethylsiloxane (PDMS) tubes are attracting attention as air bubble repellents, superhydrophilic PDMS, which is fabricated via oxygen plasma treatment, has a disadvantage in that it is weak against aging. Here, we present a tube with the ability to self-remove air bubbles, which overcomes the drawback of rapid aging. PDMS containing Silwet L-77 with a hierarchical nano-microstructure exhibiting subaqueous aerophobicity was fabricated. We conducted adherence and saturation experiments of air bubbles using the fabricated PDMS tube with Silwet L-77 to investigate the mechanism of bubbles adhering to and separating from the fabricated tube surface. The developed PDMS with Silwet L-77 exhibits a strong self-removal effect with an air bubble removal of 97.7%. The adherence and saturation experiments suggest that the transparent superhydrophilic-underwater aerophobic PDMS is a potentially exceptional tool for spontaneously separating air bubbles attached to tube surfaces.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom