z-logo
open-access-imgOpen Access
Conjugation of Cell-Penetrating Peptides to Antimicrobial Peptides Enhances Antibacterial Activity
Author(s) -
HyunHee Lee,
Sung In Lim,
SungHeui Shin,
Yong Lim,
Jae Woong Koh,
SungTae Yang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02278
Subject(s) - antimicrobial peptides , antimicrobial , gram negative bacteria , bacteria , peptide , antibacterial activity , chemistry , escherichia coli , biochemistry , lipid bilayer , innate immune system , biology , microbiology and biotechnology , membrane , genetics , receptor , gene
Antimicrobial peptides (AMPs), essential elements in host innate immune defenses against numerous pathogens, have received considerable attention as potential alternatives to conventional antibiotics. Most AMPs exert broad-spectrum antimicrobial activity through depolarization and permeabilization of the bacterial cytoplasmic membrane. Here, we introduce a new approach for enhancing the antibiotic activity of AMPs by conjugation of a cationic cell-penetrating peptide (CPP). Interestingly, CPP-conjugated AMPs elicited only a 2- to 4-fold increase in antimicrobial activity against Gram-positive bacteria, but showed a 4- to 16-fold increase in antimicrobial activity against Gram-negative bacteria. Although CPP-AMP conjugates did not significantly increase membrane permeability, they efficiently translocated across a lipid bilayer. Indeed, confocal microscopy showed that, while AMPs were localized mainly in the membrane of Escherichia coli , the conjugates readily penetrated bacterial cells. In addition, the conjugates exhibited a higher affinity for DNA than unconjugated AMPs. Collectively, we demonstrate that CPP-AMP conjugates possess multiple functional properties, including membrane permeabilization, membrane translocation, and DNA binding, which are involved in their enhanced antibacterial activity against Gram-negative bacteria. We propose that conjugation of CPPs to AMPs may present an effective approach for the development of novel antimicrobials against Gram-negative bacteria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom