Ionic Liquid Green Assembly-Mediated Migration of Piperine from Calf-Thymus DNA: A New Possibility of the Tunable Drug Delivery System
Author(s) -
Neha Maurya,
Zahoor Ahmad Parray,
Jitendra Kumar Maurya,
Asimul Islam,
Rajan Patel
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02246
Subject(s) - chemistry , micelle , ionic liquid , quenching (fluorescence) , fluorescence , molecule , solvent , organic chemistry , aqueous solution , physics , quantum mechanics , catalysis
Biocompatible surface-active ionic liquid (SAIL) was used first to study the deintercalation process of a well-known natural compound piperine (PIP) as an anticancer drug, obtained from PIP-calf thymus DNA (ctDNA) complex under controlled experimental conditions. In this study, we have been exploring the interaction of PIP in SAIL (1-butyl-3-methylimidazolium octyl sulfate ionic liquid ([C 4 mim][C 8 OSO 3 ])), ctDNA, and deintercalation of PIP from the PIP-ctDNA complex through SAIL micelle using various spectroscopic techniques. Absorption, emission, and lifetime decay measurements provide strong evidence of the relocation of PIP molecules from ctDNA to SAIL micelle. Fluorescence quenching and steady-state fluorescence anisotropy were employed to examine the exact location of PIP in different media. Moreover, the surface tension technique was also employed to confirm the release of PIP molecules from the PIP-ctDNA complex in the presence of SAIL. Circular dichroism analysis suggested that SAIL micelle does not perturb the ctDNA structure, which supported the fact that SAIL micelle can be used as a safe vehicle for PIP. Overall, the study highlighted a novel strategy for deintercalation of drug using SAIL because the release of the drug can be controlled over a period by varying the concentration and composition of the SAIL.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom