z-logo
open-access-imgOpen Access
A Nitrogen- and Self-Doped Titania Coating Enables the On-Demand Release of Free Radical Species
Author(s) -
Xin Chen,
Yulong Zhang,
Benjamin M. Wu,
Gaurav Sant
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02188
Subject(s) - anatase , coating , photocurrent , materials science , doping , rutile , chemical engineering , photochemistry , nitrogen , aqueous solution , radical , electrochemistry , visible spectrum , photocatalysis , nanotechnology , chemistry , organic chemistry , catalysis , optoelectronics , electrode , engineering
For potential applications such as suppressing the onset of peri-implant infections, a doped titania coating was developed to induce free radical release because of its ability for microbial elimination. The coatability of the sol-gel precursor is robust since the suspension's rheology can be modified to attain uniform and complete surface coverage. The coating is composed of a mixture of anatase and rutile polymorphs doped with nitrogen (N 3- ), and it contains substoichiometric Ti 2+ and Ti 3+ species. Nitrogen doping results in a 0.4 eV band gap shift, while the defects induce photocurrent generation under visible light excitation up to 650 nm. Greater currents were observed in the nitrogen-doped titania at wavelengths above 450 nm vis-à-vis its (singularly) self-doped counterparts. The (photo)electrochemical behavior and photoactivity of the coating were evaluated by assessing redox species formation in a background aqueous solution. In the absence of any illumination, the coating behaved as an insulator and inhibited the activities of both oxidative and reductive species. On the other hand, under illumination, the coating enhances oxidation processes and inhibits reduction reactions within a near-field region wherein release of free radicals occurs and is constrained (delimited).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom