Regioregularity and Electron Deficiency Control of Unsymmetric Diketopyrrolopyrrole Copolymers for Organic Photovoltaics
Author(s) -
Kenta Aoshima,
Mayuka Nomura,
Akinori Saeki
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02146
Subject(s) - copolymer , organic solar cell , materials science , thiophene , polymer solar cell , polymer chemistry , homo/lumo , electron acceptor , conjugated system , polymer , solar cell , photochemistry , chemistry , optoelectronics , organic chemistry , molecule , composite material
Manipulating the electron deficiency and controlling the regioregularity of π-conjugated polymers are important for the fine-tuning of their electronic and electrochemical properties to make them suitable for an organic solar cell. Here, we report such a molecular design of unsymmetric diketopyrrolopyrrole (DPP) based copolymers with different aromatic side units of either thiophene (Th), pyridine (Py), or fluorobenzene (FBz). The unsymmetric electron acceptors of Th-DPP-Py and Th-DPP-FBz were polymerized with the electron donor of two-dimensional benzobisthiophene (BDT-Th), affording two regiorandom DPP copolymers. They exhibited contrasting molecular orbital levels and bulk heterojunction morphology in methanofullerene-blended films, leading to power conversion efficiencies of 3.75 and 0.18%, respectively. We further synthesized a regioregular DPP copolymer via sandwiching the centrosymmetric BDT-Th unit by two Th-DPP-Py units in an axisymmetric manner. The extensive characterization through morphology observation, X-ray diffraction, and space-charge-limited current mobilities highlight the case-dependent positive/negative effects of regioregularity and electron deficiency control.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom