z-logo
open-access-imgOpen Access
Electrochemical Polymerization-Fabricated Several Triphenylamine–Carbazolyl-Based Polymers with Improved Short-Circuit Current and High Adsorption Stability in Dye-Sensitized Solar Cells
Author(s) -
Gang Wang,
Zhenhua Liu,
Xiaobo Wang,
Jun Liu,
Yuandao Chen,
Bo Liu
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02101
Subject(s) - materials science , triphenylamine , adsorption , polymer , chemical engineering , dye sensitized solar cell , titanium dioxide , polymerization , desorption , thermal stability , electrochemistry , electrode , polymer chemistry , organic chemistry , chemistry , composite material , electrolyte , engineering
Polymer dyes have many potential advantages, such as high molecular weight, better light capture ability, thermal stability, film-forming ability, light resistance, and electrochemical corrosion resistance. They are expected to provide opportunities for the development of high-stability dye-sensitized solar cells (DSCs). However, polymer DSCs (PDSCs) have poor short-circuit current and filling factor (FF) due to polymer aggregation and chain-winding effect. Therefore, the energy conversion efficiency is low. In this work, we are trying to find a way to solve this problem. Herein, three polymers, polyPAC-01 , polyPAC-02 , and polyPAC-03 with different π-bridge chains were prepared on a titanium dioxide electrode using an "adsorption first, then electropolymerization (EP)" process. Meanwhile, as a comparison, three oligomers, PAC-01 , PAC-02 , and PAC-03 with the same skeleton were synthesized by the Suzuki coupling reaction and fabricated on a titanium dioxide electrode with a "first polymerization, then adsorption" process. Then, the photoanode adsorbed by those polymers or oligomers were applied to DSCs. The results show that polymers prepared by the EP method obtained a higher short-circuit ( J sc ) increase, exceeding 30% and a FF increase of about 10%, and finally, the photo-to-electric conversion efficiency (PCE) increased exceeding 40%, compared to the oligomers. In addition, desorption experiments in a harsh environment show that the EP method-synthesized polymers ( polyPAC-03 as a representative) have better solvent resistance and adsorption stability than the corresponding oligomers ( PAC-03 ). The results show that the process of "adsorption first, then EP" may be an effective way to solve the bottlenecks of low energy conversion efficiency on PDSCs and provide a new way to develop stable and efficient DSCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom