Theoretical Exploration of Carrier Dynamics in Amorphous Pyrene–Fluorene Derivative Organic Semiconductors
Author(s) -
Yuan Zhang,
Lingkun Meng,
Jinlong Hu,
Ruike Zou,
Chao Tang,
Gong Li,
Yan Ding,
HaiTong Cai,
Zhiyao Yang,
Wei Huang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02083
Subject(s) - fluorene , pyrene , amorphous solid , electron transfer , chemical physics , materials science , molecular dynamics , derivative (finance) , organic semiconductor , chemistry , computational chemistry , organic chemistry , polymer , financial economics , economics
In this report, a series of amorphous organic optoelectronic pyrene-fluorene derivative materials (BP1, BP2, PFP1, PFP2, OP1, OP2) were systematically investigated through a theoretical method. Their molecular structures are different due to the difference of substitution groups at C9 of the fluorene core, which include electron-rich pyrene group (PFP1 and PFP2), relatively neutral phenyl group (BP1 and BP2), and electron-withdrawing oxadiazole group (OP1 and OP2). In the beginning, through the physical model analysis, this report proposes that the concept of p-type or n-type is not flawless because there is no real doping process in these molecular organic semiconductors. To prove such a concept, the Marcus theory and first-principles were employed to calculate the intrinsic transfer mobility of these materials. Not as the common method used for the single crystal, in this report, a series of disorderly designed lattice cells were constructed to represent the disordered distribution of the amorphous pyrenyl-fluorene derivatives. Then, the reorganization energy of materials was calculated by the adiabatic potential energy surface method. The transfer integral of dimers was calculated in possible hopping pathways near the central molecule. Research results show that the six pyrene-fluorene materials all possess intrinsic bipolar transfer characteristics. In addition, it is also showed that the electron-rich group is not necessary to improve hole transfer, and that the electron-withdrawing group is also not necessary to improve electron transfer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom