Solution-Processible Blue Fluorescent Dendrimers with Carbazole/Diphenylamine Hybrid Dendrons for Power-Efficient Organic Light-Emitting Diodes
Author(s) -
Lei Zhao,
Shumeng Wang,
Junqiao Ding,
Lixiang Wang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01979
Subject(s) - dendrimer , diphenylamine , fluorescence , carbazole , oled , quantum yield , materials science , photochemistry , diode , photoluminescence , chemistry , optoelectronics , polymer chemistry , nanotechnology , optics , organic chemistry , physics , layer (electronics)
Two blue fluorescent dendrimers named PVAC2 and PVACA have been newly synthesized and investigated, where the carbazole/diphenylamine hybrid dendron is adopted instead of oligocarbazole. Compared with the reference dendrimer PVCt3, the emission maxima of PVAC2 and PVACA are found to be red-shifted accompanied by a slight reduction of the photoluminescence quantum yield in films. Most importantly, the highest occupied molecular orbital level is elevated from -5.35 eV of PVCt3 to -5.20 eV of PVAC2 and -4.95 eV of PVACA. Because of the favored hole injection, the turn-on voltage is accordingly decreased from 3.6 to 3.2 and 2.6 V. The value of PVACA is even lower than the theoretical limit of 2.78 V. In addition, PVAC2 exhibited the best nondoped device performance, showing a nearly doubled power efficiency of 4.80 lm/W relative to PVCt3 (2.37 lm/W). The results clearly indicate that dendron engineering is also a promising strategy to develop solution-processible blue fluorescent dendrimers capable of being used for power-efficient organic light-emitting diodes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom