Coordination-Directed Assembly of Luminescent Semiconducting Oligomers and Weak Interaction-Induced Morphology Transformation
Author(s) -
Shiyin Zhao,
Zhaoyang Ding,
Chunfei Wang,
Shichao Wang,
Shun Li,
Zuotai Zhang,
Xuanjun Zhang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01972
Subject(s) - nitrobenzene , luminescence , moiety , morphology (biology) , materials science , nitro , selectivity , nanotechnology , chemistry , stereochemistry , organic chemistry , alkyl , optoelectronics , biology , genetics , catalysis
Luminescent semiconducting oligomers (LSOs) have been one of the most popular molecular materials that can be applied in various fields because of their distinctive optical properties. The study of molecular packing and morphological change of oligomers is essential for the rational design of materials and regulation functions. Herein, we report two novel LSOs (OFBB and OFBT) with a slight difference in chemical structures but show a distinct difference in self-assembly behaviors in the coordination-driven process. OFBB forms spherical particles with Zn(II). Compared with OFBB, OFBT has an additional thiazole moiety, which forms spherical particles with Zn(II) and then transforms to a crystalline nanobelt in 2 h. The process and mechanism of the nanosphere and nanobelt formation were investigated in detail. The double S···N interaction between two benzothiazoles in adjacent oligomers played a significant contribution in this dynamic morphology transformation. In addition, the as-prepared two products showed excellent sensing toward nitrobenzene with good selectivity over other nitro-aromatic explosives.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom