Construction of Dispiro-Indenone Scaffolds via Domino Cycloaddition Reactions of α,β-Unsaturated Aldimines with 2-Arylidene-1,3-indenediones and 2,2′-(Arylmethylene)bis(1,3-indenediones)
Author(s) -
Wenjuan Yang,
HuiLin Fang,
Jing Sun,
ChaoGuo Yan
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01960
Subject(s) - indene , chemistry , cycloaddition , domino , cyclohexane , acetonitrile , medicinal chemistry , catalysis , nucleophilic addition , nucleophile , alkyl , organic chemistry
The catalyst-free domino reaction of α,β-unsaturated N -alkyl or N -arylaldimines with two molecules of 2-arylidene-1,3-indanediones in dry acetonitrile resulted in polysubstituted spiro[indene-2,3'-indeno[2',1':5,6]pyrano[2,3- b ]pyridines] in moderate to good yields and with high diastereoselectivity. The reaction mechanism included sequential aza/oxa-Diels-Alder reactions via both endo-transition states. On the other hand, the catalyst-free domino reaction of α,β-unsaturated N -arylaldimines with 2,2'-(arylmethylene)bis(1,3-indenediones) afforded the mixed diastereoisomeric dispiro[indene-2,1'-cyclohexane-3',2″-indene] derivatives in satisfactory yields. The reaction mechanism of this formal [3 + 3] cycloaddition was believed to proceed with sequential nucleophilic 1,4-/1,2-additions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom