z-logo
open-access-imgOpen Access
Impact of Counter Ions of Cationic Monomers on the Production and Characteristics of Chitosan-Based Hydrogel
Author(s) -
Solmaz Heydarifard,
Weijue Gao,
Pedram Fatehi
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01953
Subject(s) - cationic polymerization , chitosan , monomer , self healing hydrogels , polymer chemistry , polymerization , chemistry , chemical engineering , nuclear chemistry , organic chemistry , polymer , engineering
Chitosan-based hydrogel has received considerable interests because of its appealing properties and applications in many areas. The primary objective of this work was to produce novel cationic chitosan-based hydrogels via polymerizing chitosan with two cationic monomers of the same structure but with different counter ions [2-(methacryloyloxy)ethyl]trimethylammonium methyl sulfate (METMS) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC). Polymerization of chitosan with the cationic monomers performed under the conditions of 50 °C, 5 h, 7 pH, and 2/1 mol/mol monomer/chitosan led to chitosan-METMS and -METAC with the cationic charge densities of 3.22 and 2.88 mequiv/g, respectively. Elemental analysis, gel permeation chromatography, Fourier transform infrared, X-ray diffraction, and differential scanning calorimetry analyses were used to confirm the impact of counter ions of cationic monomers (i.e., polarizability of monomers) on their polymerization performance and the characteristics of induced chitosan-based hydrogels. Also, the results of this work postulated that the counter ions associated with the monomers could dramatically impact the water uptake and swelling properties of the generated chitosan-based hydrogels as well as their performance in adsorbing an anionic dye from a simulated solution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom