Harvesting Energy from Multiple Microbial Fuel Cells with a High-Conversion Efficiency Power Management System
Author(s) -
CongLong Nguyen,
B. Tartakovsky,
L. A. Woodward
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01854
Subject(s) - microbial fuel cell , voltage , renewable energy , electricity generation , energy harvesting , maximum power principle , capacitor , electricity , open circuit voltage , power management , power (physics) , electrical engineering , computer science , engineering , physics , quantum mechanics
Direct electricity production from waste biomass in a microbial fuel cell (MFC) offers the advantage of producing renewable electricity at a high Coulombic efficiency. However, low MFC voltage (below 0.5 V) necessitates the simultaneous operation of multiple MFCs controlled by a power management system (PMS) adapted for operating bioelectrochemical systems with complex nonlinear dynamics. This work describes a novel PMS designed for efficient energy harvesting from multiple MFCs. The PMS includes a switched-capacitor-based converter, which ensures operation of each MFC at its maximum power point (MPP) by regulating the output voltage around half of its open-circuit voltage. The open-circuit voltage of each MFC is estimated online regardless of MFC internal parameter knowledge. The switched-capacitor-based converter is followed by an upconverter, which increases the output voltage to a required level. Advantages of the proposed PMS include online MPP tracking for each MFC and high (up to 85%) power conversion efficiency. Also, the PMS prevents voltage reversal by disconnecting an MFC from the circuit whenever its voltage drops below a predefined threshold. The effectiveness of the proposed PMS is verified through simulations and experimental runs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom