z-logo
open-access-imgOpen Access
Photoluminescence Quantum Yield of Fluorescent Silicon Carbide Determined by an Integrating Sphere Setup
Author(s) -
Yi Wei,
Haiyan Ou
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01753
Subject(s) - silicon carbide , photoluminescence , quantum yield , materials science , fluorescence , excitation , yield (engineering) , auger , analytical chemistry (journal) , auger effect , impurity , optoelectronics , atomic physics , chemistry , optics , physics , quantum mechanics , metallurgy , chromatography
The excitation-dependent photoluminescence quantum yield (PL-QY) of strong n-type nitrogen-boron codoped 6H fluorescent silicon carbide (f-SiC) at room temperature is experimentally determined for the first time. The PL-QY measurements are realized by an integrating sphere system based on a classical two-measurement approach. In particular, in accordance to the difference between our in-lab setup and the standard setup of the two-measurement approach, we have technically modified the experimental design, the data processing algorithm, and the estimation of relative uncertainty. The measured highest PL-QY of f-SiC samples is found to reach above 30%. We compare the PL-QYs at a certain excitation power of all f-SiC samples by considering their intrinsic defect densities. Finally, the evolution of the excitation power-dependent PL-QY of f-SiC is attributed to both band-to-band and impurity-assisted Auger recombination.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom