Peptide–Fluorophore Hydrogel as a Signal Boosting Approach in Rapid Detection of Cancer DNA
Author(s) -
Bernhard Jandl,
Sima Sedghiniya,
Annika Carstens,
Kira Astakhova
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01586
Subject(s) - oligonucleotide , dna , fluorophore , detection limit , microbiology and biotechnology , cyanine , chemistry , biology , computational biology , fluorescence , biochemistry , chromatography , physics , quantum mechanics
Cancer is a major health risk in the modern society that requires rapid, reliable, and inexpensive diagnostics. Because of the low abundance of cancer DNA in biofluids, current detection methods require DNA amplification. The amplification can be challenging; it provides only relative quantification and extends time and cost of an assay. Herein, we report a new oligonucleotide hybridization platform for amplification-free detection of human cancer DNA. Using a large PEG-capture probe allows rapid separation of the bound (mutant) versus unbound (wild type) DNA. Next, a supramolecular hydrogel forming peptide attached to a detection oligonucleotide probe serves as a signal amplification tool. Having screened multiple short peptides and fluorophores, we identified the system P1 + cyanine 3.5 that allows for sensitive quantitative detection of mutation L858R in EGFR oncogene. The peptide-fluorophore-based assay provides absolute target DNA quantification at the detection limit of 20 ng cancer DNA versus >500 ng for Cy3.5-labeled oligonucleotide in only 1 hour.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom