z-logo
open-access-imgOpen Access
Sustaining Antibiotic Release from a Poly(methyl methacrylate) Bone-Spacer
Author(s) -
Pongpat Oungeun,
Rojrit Rojanathanes,
Piya Pinsornsak,
Supason Wanichwecharungruang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01472
Subject(s) - methacrylate , antibiotics , poly(methyl methacrylate) , chemistry , methyl methacrylate , polymer chemistry , organic chemistry , polymer , biochemistry , copolymer
One of the challenges in using a bone-spacer to cure infection is the fabrication of a material that can continuously release required antibiotics at effective concentrations for at least 4-6 weeks. Poly(methyl methacrylate) (PMMA) impregnated with antibiotics is one of the popularly used bone-spacer materials. Currently, improved sustained release of hydrophobic and hydrophilic antibiotics is needed for this material. Here, hydrophilic vancomycin (VAN) was encapsulated into calcium citrate (CC) particles and natural rice granules, and hydrophobic erythromycin (ERY) was encapsulated into ethyl cellulose and poly(lactic- co -glycolic acid) particles. The four antibiotic-loaded particles were each incorporated into the PMMA cement. The two unencapsulated drugs and all four drug-loaded particles distributed well in the obtained composites. PMMA composited with VAN-loaded CC showed prolonged VAN release at an effective concentration for more than 40 days, but the composite possessed lesser compressive strength than the PMMA with no drug. PMMA composited with unencapsulated ERY showed a better sustainment of drug release than those composited with encapsulated ERY. VAN elution from the VAN-CC-PMMA did not significantly affect the compressive strength of the material, whereas ERY elution from the ERY-PMMA composite significantly decreased the material's mechanical strength.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom