z-logo
open-access-imgOpen Access
Signal Enhancement of Silicon Nanowire Field-Effect Transistor Immunosensors by RNA Aptamer
Author(s) -
Cao-An Vu,
Wen-Pin Hu,
YuhShyong Yang,
Hardy Chan,
WenYih Chen
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01264
Subject(s) - aptamer , biosensor , nanotechnology , materials science , field effect transistor , silicon nanowires , nanowire , transistor , rna , silicon , small molecule , chemistry , optoelectronics , voltage , microbiology and biotechnology , biochemistry , biology , physics , quantum mechanics , gene
Silicon nanowire field-effect transistors (SiNW-FETs) have been demonstrated as a highly sensitive platform for label-free detection of a variety of biological and chemical entities. However, detecting signal from immunoassays by nano-FETs is severely hindered by the distribution of different charged groups of targeted entities, their binding orientation, and distances to the surface of the FET. Aptamers have been widely applied as a recognition element for plentiful biosensors because of small molecular sizes and moderate to high specific binding affinity with different types of molecules. In this study, we propose an effective approach to enhance the electrical responses of both direct (6×-histidine) and sandwich (amyloid β 1-42) immunoassays in SiNW-FETs with R18, a highly negative charged RNA aptamer against rabbit immunoglobulin G (IgG). Empirical results presented that the immunosensors targeted with R18 expressed a significantly stabilized and amplified signal compared to the ones without this aptamer. The research outcome provides applicability of the highly negative charged aptamer as a bioamplifier for immunoassays by FETs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom