Azide-Based High-Energy Metal–Organic Frameworks with Enhanced Thermal Stability
Author(s) -
Ignacio Chi-Durán,
Javier Enríquez,
Carolina Manquián,
Rubén A. Fritz,
Andrés Vega,
Daniel Serafini,
Felipe Herrera,
Dinesh Pratap Singh
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01127
Subject(s) - detonation , explosive material , differential scanning calorimetry , detonation velocity , thermal stability , metal organic framework , thermal analysis , materials science , azide , elemental analysis , fourier transform infrared spectroscopy , metal , ligand (biochemistry) , hydrothermal synthesis , energetic material , hydrothermal circulation , analytical chemistry (journal) , chemical engineering , chemistry , inorganic chemistry , thermal , thermodynamics , organic chemistry , metallurgy , biochemistry , physics , receptor , adsorption , engineering
We describe the structure and properties of [Zn(C 6 H 4 N 5 )N 3 ] n , a new nonporous three-dimensional high-energy metal-organic framework (HE-MOF) with enhanced thermal stability. The compound is synthesized by the hydrothermal method with in situ ligand formation under controlled pH and characterized using single-crystal X-ray diffraction, elemental analysis, and Fourier transform infrared. The measured detonation temperature ( T det = 345 °C) and heat of detonation (Δ H det = -0.380 kcal/g) compare well with commercial explosives and other nitrogen-rich HE-MOFs. The velocity and pressure of denotation are 5.96 km/s and 9.56 GPa, respectively. Differential scanning calorimetry analysis shows that the denotation of [Zn(C 6 H 4 N 5 )N 3 ] n occurs via a complex temperature-dependent mechanism.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom