z-logo
open-access-imgOpen Access
Ultrasound-Assisted Synthesis, Antifungal Activity against Fusarium oxysporum, and Three-Dimensional Quantitative Structure–Activity Relationship of N,S-Dialkyl Dithiocarbamates Derived from 2-Amino Acids
Author(s) -
Diego Quiroga,
Lili Dahiana Becerra,
Ericsson CoyBarrera
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01098
Subject(s) - moiety , fusarium oxysporum , dithiocarbamate , chemistry , steric effects , alkyl , fusarium , quantitative structure–activity relationship , amino acid , stereochemistry , mycelium , organic chemistry , biochemistry , biology , botany , horticulture
A high-yielding, green, and fast synthesis of alkyl 2-substituted {[(alkylsulfanyl)carbonothioyl]amino}acetate-type compounds is described. The one-pot, three-component condensation of alkyl 2-aminoesters, carbon disulfide, and electron-deficient olefins was the key reaction to be developed. The products were obtained easily and efficiently, with good overall yields after two steps (79-91%), employing short reaction times, without the use of a catalyst, and ultrasonic irradiation in water. This procedure was exploited to produce antifungals against the phytopathogenic fungus Fusarium oxysporum . Some synthesized compounds exhibited good performance as mycelial growth inhibitors (IC 50 < 80 μM). Structural and antifungal datasets were integrated to explore the comprehensive three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and explain the observed activity. This integration resulted in an excellent CoMFA model ( r 2 = 0.812; q 2 = 0.771) after substructure-based alignment. According to this model, synthesized compounds possessing steric bulky electron-withdrawing groups in the dithiocarbamate moiety can be considered as promising F. oxysporum inhibitors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom