z-logo
open-access-imgOpen Access
Water Vapor Adsorption–Desorption Behavior of Surfactant-Coated Starch Particles for Commercial Energy Wheels
Author(s) -
Mohsen Shakouri,
Easwaran N. Krishnan,
Abdalla H. Karoyo,
Leila Dehabadi,
Lee D. Wilson,
Carey J. Simonson
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00755
Subject(s) - adsorption , desorption , pulmonary surfactant , chemical engineering , water vapor , starch , materials science , chemistry , organic chemistry , engineering
This study reports on the adsorption (dehumidification)-desorption (humidification) behavior of cetylpyridinium bromide (CPB) coated starch particles (SPs), denoted as SP-CPB, as a potential desiccant material for air-to-air energy exchangers. CPB is a cationic surfactant with antibacterial activity that can be used to modify the surface properties of SPs, especially at variable CPB loading levels (SP-CPB0.5, SP-CPB2.5, and SP-CPB5.0, where the numeric suffix represents the synthetic loading level of CPB in mM). The SP-CPB0.5 sample displayed optimal surface area and pore structure properties that was selected for water sorption isotherm studies at 25 °C. The CPB-coated SPs sample (SP-CPB0.5) showed an improved water vapor uptake capacity compared to unmodified starch (SPs) and other desiccant systems such as high amylose starch (HAS 15 ) and silica gel (SG 13 ). Single-step and cyclic water vapor sorption tests were conducted using a small-scale exchanger coated with SP-CPB0.5. The calculated latent effectiveness values obtained from direct measurements using cyclic tests (65.4 ± 2%) agree closely with the estimated latent effectiveness from single-step tests (64.6 ± 2%) at controlled operating conditions. Compared to HAS 15 - and SG 13 -coated exchangers, the SP-CPB0.5-coated exchanger performed much better at controlled operating conditions, along with improved longevity due to the CPB surface coating. The presence of CPB did not attenuate the uptake properties of native SPs. Latent effectiveness of SP-CPB0.5-coated exchanger was enhanced (5-30% higher) over that of the SG 13 - or HAS 15 -coated exchangers, according to the wheel angular speed. This study reports on a novel and sustainable SP-CPB0.5 material as a promising desiccant coating with tunable uptake and surface properties with potential utility in air-to-air energy exchangers for ventilation systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom