Study of a New Process for the Preparation of Butyl Levulinate from Cellulose
Author(s) -
Chen Liang,
Yan Wang,
Yangdong Hu,
Lianying Wu,
Weitao Zhang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00735
Subject(s) - levulinic acid , raw material , cellulose , hydrolysis , chemistry , biomass (ecology) , extraction (chemistry) , pulp and paper industry , humin , process (computing) , organic chemistry , chromatography , process engineering , waste management , catalysis , computer science , engineering , fertilizer , oceanography , humic acid , operating system , geology
Butyl levulinate (BL) is a versatile chemical utilized widely in food and chemical industries, the production of which by using cellulose in biomass resources is of great significance to its sustainable development. Traditional synthesis processes for n -butyl levulinate are confronted with various problems such as high cost of raw materials, difficulty in separating products, etc. In this paper, a novel process for the preparation of BL from cellulose is proposed. The process is composed of five main unit operations including fed-batch hydrolysis, decolorization, extraction, esterification and purification. A 171.63 g/L concentration of the intermediate levulinic acid was obtained at the fifth feeding through the fed-batch hydrolysis process. The resin-activated carbon secondary decolorization method was adopted to remove the soluble humin byproducts with an accumulative decolorization rate of 89%. In the extraction process, the product BL was chosen as the extractant to avoid the introduction of new impurities. After purification, the purity of the final product BL reaches up to 98 wt %. The proposed technique allows for cost-effective and eco-friendly production of BL from biomass resources.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom