Synthesis and Characterization of Magnetic Zeolite Y–Palladium–Nickel Ferrite by Ultrasonic Irradiation and Investigating Its Catalytic Activity in Suzuki–Miyaura Cross-Coupling Reactions
Author(s) -
Modarres Dehghani,
Azadeh Tadjarodi,
Sanaz Chamani
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00666
Subject(s) - palladium , catalysis , nickel , zeolite , materials science , ferrite (magnet) , inductively coupled plasma , phenylboronic acid , coupling reaction , inorganic chemistry , chemistry , metallurgy , composite material , organic chemistry , plasma , physics , quantum mechanics
Zeolite faujasite is widely used as a catalyst in many industrial catalytic applications. In this study, synthesis and characterization of magnetic zeolite Y-palladium-nickel ferrite were studied. First, palladium nanoparticles were combined with nickel ferrite and then placed on zeolite Y by ultrasonic treatment. The structure and morphology of the synthesized magnetic zeolite Y-palladium-nickel ferrite were characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, vibrating sample magnetometer, and inductively coupled plasma optical emission spectroscopy analysis. Also, we investigated the catalytic activity of this prepared zeolite in Suzuki-Miyaura coupling reaction between phenylboronic acid and aryl halides. Our study shows that magnetic zeolite Y-palladium-nickel ferrite is a suitable catalyst for Suzuki-Miyaura coupling reaction. Short reaction time, high yield, and easy reusability are the advantages of using this catalyst in carbon-carbon cross-coupling reactions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom