z-logo
open-access-imgOpen Access
Quantum Mechanical-Based Quantitative Structure–Property Relationships for Electronic Properties of Two Large Classes of Organic Semiconductor Materials: Polycyclic Aromatic Hydrocarbons and Thienoacenes
Author(s) -
Lam Nguyen,
Tuan Hoang Nguyen,
Thanh N. Truong
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00513
Subject(s) - property (philosophy) , organic semiconductor , semiconductor , quantum , electronic structure , materials science , computational chemistry , chemistry , optoelectronics , physics , quantum mechanics , philosophy , epistemology
In this study, the degree of the π-orbital overlap (DPO) model proposed earlier for polycyclic aromatic hydrocarbons (PAH) was employed to develop quantitative structure-property relationships (QSPRs) for band gaps, ionization potentials, and electron affinities of thienoacenes. DPO is based on two-dimensional topological draw of aromatic molecules. The B3LYP/6-31+G(d) level of density functional theory (DFT) was used to provide chemical data for developing QSPRs. We found that the DPO model is able to capture the correct physics of electronic properties of aromatic molecules so that with only six nonzero topological parameters (four for PAH and additional two for thienoacenes), the DPO model yields the linear dependence of electronic properties of both the PAH and thienoacenes classes by a single set of QSPRs with the accuracy to within 0.1 eV of the DFT results. The results suggest that within the DPO framework, all aromatic molecules can share the same set of QSPRs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom